⭐ COUPON: SALE2020 ⭐ 20% OFF ON ALL WORKBOOKS*3 DAYS FREE SHIPPING ⭐ FREE RETURNS ⭐

Fail to load the data
0

Did you know that the average normal temperature of the human body is 37° C?

This is only one of many curiosities about number 37.
In mathematics, 37 is known as the 12th prime number. In what follows, we will study some properties of 37 as a prime number.

We will start recalling some definitions that we have widely discussed in our Prime Numbers article. If you still feel unfamiliar with these notions, we invite you to first read that article, and come back here later.

A factor of a natural number is a positive divisor of the number. A proper factor of a natural number is a factor that is different from 1 and from the number itself. For example, 27 = 3×9 = 1×27; thus, 1, 3, 9, and 27 are all factors of 27, but only 3 and 9 are proper factors of 27.

A natural number is called prime number if it is greater than 1, and it doesn’t have proper factors. For example, the first prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31.

A composite number is a natural number that has proper factors. As we saw, 27 has two proper factors, thus 27 is a composite number.

Why is 37 a prime number?

Number 37 is prime because it doesn’t have proper factors. In other words, the only factors of 37 are 1 and itself. To be sure of it, we can use the following property.

If 𝒏 is a natural number, and neither of the prime numbers less than divides 𝒏, then 𝒏 is a prime number.

Notice that 37<49, thus . Therefore, the prime numbers less than are 2, 3 and 5.

Since 37 isn’t an even number, 2 doesn’t divide 37. Moreover, 37 = (3×12) + 1 and 37 = (5×7) + 2, meaning that neither 3 nor 5 divides 37. Then, by the property above, 37 is a prime number.

 

On the other hand, a prime number of objects can’t be arranged into a rectangular grid with more than one column and more than one row. This is another way of verifying that 37 is a prime number:

  • For example, if we try to arrange 37 stars into a rectangular grid with four rows, one of the columns will be incomplete.
    The same happens if we try to arrange 37 stars into a rectangular grid with any number of rows and columns greater than one.
  • The only way of arranging 37 stars into a rectangular grid, is by having a single row, or a single column. This means that 37 is a prime number!

Which class of prime number is 37?

Number 37 is the 12th prime number. Its digits are 3 and 7, which are also prime numbers. Moreover, when we reverse the digits of 37, we get 73 which is again a prime number!

Thirty-seven can be classified into many classes of primes numbers. However, as we will see next, it doesn’t belong to any of the three classes that we mention below.

Classes of Prime Numbers
Primoral prime It is a prime number of the form

where

are the first n prime numbers.
No
Mersenne prime It is a prime number of the form

where n is an integer.
No
Safe prime It is a prime number of the form 2p+1 where p is also a prime number. No

Let’s find out why:

  • Notice that if we use the first three prime numbers 2, 3, and 5 in the primoral formula, we get (2×3×5)−1=29 and (2×3×5)+1=31. If we use the first four primes 2, 3, 5, and 7, we get (2×3×5×7)−1=209 and (2×3×5×7)+1=211. Since the first two of the resulting numbers are less than 37, and the last two are greater than 37, then 37 doesn’t have the form of a primoral prime.
  • Notice that:


    Therefore, 37 doesn’t have the form of a Mersenne prime.
  • Let’s consider the values that takes 2p+1, for different primes p:
p  2p + 1
2(2) + 1 = 5
3 2(3) + 1 = 7
5 2(5) + 1 = 11
7 2(7) + 1 = 15
11 2(11) + 1 = 23
13 2(13) + 1 = 27
17 2(17) + 1 = 35
19 2(19) + 1  = 39

Since 37 is not in the right column, it doesn’t have the form of a safe prime.

We invite you to read other articles on prime numbers, in our blog, to find out which other prime numbers belong to these classes.

 

Frequently Asked Questions

Yes, because its only factors are 1 and itself.

No, because it doesn’t have proper factors.

No, because it is greater than (2×3×5)±1, and less than (2×3×5×7)±1.

No, because it is between and .

No, because it is between 2(17)+1=35 and 2(19)+1=39.

What do you think about this article? Share your opinion with us

ENTER BELOW FOR ARGOPREP'S FREE WEEKLY GIVEAWAYS. EVERY WEEK!
Great! You will receive an email from US shortly. Have a great day!
FREE 100$ in books to a family!
Error! Please try again!
SUCCESS
See Related Worksheets:
3rd grade
Good "Night"
Worksheets
 (0)
It will be a good "night" after completing this learning tool. This worksheet is a great way to teach your lea...
3rd grade
Metal Man and Bug Boy Explain the Data
Worksheets
 (0)
The kids these days - they love their data! Students will love these rambunctious robots! They've taken polls ...
3rd grade
"Drink" More Water!
Worksheets
 (0)
Staying hydrated is important work for kids' brains! So is practicing sight words. Students will appreciate th...
Kindergarten
Left Arrow- Tracing it is acing it
Worksheets
 (0)
A clear sense of direction makes for a successful like. The earlier you gain it, the easier the rest of your l...
1st grade
Trace Letter "E"
Worksheets
 (0)
Let your tiny students see how easy it is to practice letter E. We offer you the easiest way there is to teach...
3rd grade
You've Got "Mail"
Worksheets
 (0)
You've got "mail," and your students will love learning with this sight word tool that you'll surely want to s...

Try ArgoPrep for FREE

Learn more Try ArgoPrep for FREE

Share good content with friends and get 15% discount for 12-month subscription

Share in facebook Share in twitter

Read More

Loading content ...
Loading failed...
Exclusive Offer To Boost Your Scores!
Want 800+ Printable Math Questions?
Absolutely For Free 🥳